Current distribution monitoring enables quench and damage detection in superconducting fusion magnets

Author:

Teyber Reed,Weiss Jeremy,Marchevsky Maxim,Prestemon Soren,van der Laan Danko

Abstract

AbstractFusion magnets made from high temperature superconducting ReBCO CORC® cables are typically protected with quench detection systems that use voltage or temperature measurements to trigger current extraction processes. Although small coils with low inductances have been demonstrated, magnet protection remains a challenge and magnets are typically operated with little knowledge of the intrinsic performance parameters. We propose a protection framework based on current distribution monitoring in fusion cables with limited inter-cable current sharing. By employing inverse Biot-Savart techniques to distributed Hall probe arrays around CORC® Cable-In-Conduit-Conductor (CICC) terminations, individual cable currents are recreated and used to extract the parameters of a predictive model. These parameters are shown to be of value for detecting conductor damage and defining safe magnet operating limits. The trained model is then used to predict cable current distributions in real-time, and departures between predictions and inverse Biot-Savart recreated current distributions are used to generate quench triggers. The methodology shows promise for quality control, operational planning and real-time quench detection in bundled CORC® cables for compact fusion reactors.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3