Mechanistic insights into the anti-restenotic effects of HSP27 and HO1 modulated by reconstituted HDL on neointimal hyperplasia

Author:

Kim Ye Ji,Khaleel Zinah Hilal,Jin Myeongji,Lee Jo Woon Yi,Park Seongchan,Ga Seongmin,Kim Nam Hyeong,Sa Deok Hyang,Kang Eun Sung,Han Seul Hee,Lee Ji Yeun,Ku Hyo Jung,Kim Sang-Wook,Kim Ki Yong,Park Jeong Euy,Kim Yong Ho,Lee Bok-Soo

Abstract

AbstractHigh-density lipoprotein (HDL) therapy has demonstrated beneficial effects in acute stroke and acute myocardial infarction models by reducing infarct size. In this study, we investigated the inhibitory effects of reconstituted HDL (rHDL) on neointimal hyperplasia and elucidated its underlying mechanism using a balloon injury rat model. Our finding revealed a significant 37% reduction in the intima to media ratio in the arteries treated with 80 mg/kg rHDL compared to those subjected to injury alone (p < 0.05), indicating a specific inhibition of neointimal hyperplasia. In vivo analysis further supported the positive effects of rHDL by demonstrating a reduction in smooth muscle cell (SMC) proliferation and an increase in endothelial cell (EC) proliferation. Additionally, rHDL treatment led to decreased infiltration of leukocytes and downregulated the expression of matrix metallopeptidase 9 (MMP9) in the neointimal area. Notably, rHDL administration resulted in decreased expression of VCAM1 and HIF1α, alongside increased expression of heme oxygenase 1 (HO1) and heat shock protein 27 (HSP27). Overexpression of HSP27 and HO1 effectively inhibited SMC proliferation. Moreover, rHDL-mediated suppression of injury-induced HIF1α coincided with upregulation of HSP27. Interestingly, HSP27 and HO1 had varying effects on the expression of chemokine receptors and rHDL did not exert significant effect on chemokine receptor expression in THP1 cells. These findings underscore the distinct roles of HSP27 and HO1 as potential regulatory factors in the progression of restenosis. Collectively, our study demonstrates that rHDL exerts a potent anti-neointimal hyperplasia effect by reducing leukocytes infiltration and SMC proliferation while promoting EC proliferation.

Funder

National Research Foundation of Korea funded by the Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3