Optimization of Cd (II) removal from aqueous solution by natural hydroxyapatite/bentonite composite using response surface methodology

Author:

Desalegn Yiene Molla,Bekele Endrias Adane,Olu Femi Emmanuel

Abstract

AbstractToxic cadmium (Cd) was removed from water using eggshell-based hydroxyapatite (HAp) grafted bentonite (HAp/bentonite) composite through a straightforward chemical synthesis route. The as-prepared adsorbents were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller analysis (BET). Optimization of the initial adsorbate concentration, adsorbent dosage, pH, and contact time—all of which affect the adsorption process—was performed using the central composite design (CCD) of the response surface methodology (RSM). 99.3 percent adsorptive removal efficiency was observed at an initial concentration of 61.58 mg/L of Cd (II), with an adsorbent dosage of 1.58 g, a solution pH of 5.88, and a contact time of 49.63 min. The analysis of variance (ANOVA) was performed, and the multiple correlation coefficient (R2) was found to be 0.9915 which confirms the significance of the predicted model. The Langmuir isotherm model best represented the adsorption isotherm data, which also predicted a maximum sorption capacity of 125.47 mg/g. The kinetic data were best described by the pseudo-second order model.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3