Research on expansion and classification of imbalanced data based on SMOTE algorithm

Author:

Wang Shujuan,Dai Yuntao,Shen Jihong,Xuan Jingxue

Abstract

AbstractWith the development of artificial intelligence, big data classification technology provides the advantageous help for the medicine auxiliary diagnosis research. While due to the different conditions in the different sample collection, the medical big data is often imbalanced. The class-imbalance problem has been reported as a serious obstacle to the classification performance of many standard learning algorithms. SMOTE algorithm could be used to generate sample points randomly to improve imbalance rate, but its application is affected by the marginalization generation and blindness of parameter selection. Focusing on this problem, an improved SMOTE algorithm based on Normal distribution is proposed in this paper, so that the new sample points are distributed closer to the center of the minority sample with a higher probability to avoid the marginalization of the expanded data. Experiments show that the classification effect is better when use proposed algorithm to expand the imbalanced dataset of Pima, WDBC, WPBC, Ionosphere and Breast-cancer-wisconsin than the original SMOTE algorithm. In addition, the parameter selection of the proposed algorithm is analyzed and it is found that the classification effect is the best when the distribution characteristics of the original data was maintained best by selecting appropriate parameters in our designed experiments.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3