Bone mineral density and microarchitecture change during skeletal growth in harbor seals (Phoca vitulina) from the German coast

Author:

Delsmann Julian,Schmidt Britta,Oheim Ralf,Amling Michael,Rolvien Tim,Siebert Ursula

Abstract

AbstractAcross species, the skeletal system shares mutual functions, including the protection of inner organs, structural basis for locomotion, and acting as an endocrine organ, thus being of pivotal importance for survival. However, insights into skeletal characteristics of marine mammals are limited, especially in the growing skeleton. Harbor seals (Phoca vitulina) are common marine mammals in the North and Baltic Seas and are suitable indicators of the condition of their ecosystem. Here, we analyzed whole-body areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and lumbar vertebrae by high-resolution peripheral quantitative computed tomography (HR-pQCT) in neonate, juvenile, and adult harbor seals. Along skeletal growth, an increase in two-dimensional aBMD by DXA was paralleled by three-dimensional volumetric BMD by HR-pQCT, which could be attributed to an increasing trabecular thickness while trabecular number remained constant. Strong associations were observed between body dimensions (weight and length) and aBMD and trabecular microarchitecture (R2 = 0.71–0.92, all p < 0.001). To validate the results of the DXA measurement (i.e., the standard method used worldwide to diagnose osteoporosis in humans), we performed linear regression analyses with the three-dimensional measurements from the HR-pQCT method, which revealed strong associations between the two imaging techniques (e.g., aBMD and Tb.Th: R2 = 0.96, p < 0.0001). Taken together, our findings highlight the importance of systematic skeletal investigations in marine mammals during growth, illustrating the high accuracy of DXA in this context. Regardless of the limited sample size, the observed trabecular thickening is likely to represent a distinct pattern of vertebral bone maturation. As differences in nutritional status, among other factors, are likely to affect skeletal health, it appears essential to routinely perform skeletal assessments in marine mammals. Placing the results in the context of environmental exposures may allow effective measures to protect their populations.

Funder

Stiftung Tierärztliche Hochschule Hannover (TIHO)

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3