refineR: A Novel Algorithm for Reference Interval Estimation from Real-World Data

Author:

Ammer Tatjana,Schützenmeister André,Prokosch Hans-Ulrich,Rauh Manfred,Rank Christopher M.,Zierk Jakob

Abstract

AbstractReference intervals are essential for the interpretation of laboratory test results in medicine. We propose a novel indirect approach to estimate reference intervals from real-world data as an alternative to direct methods, which require samples from healthy individuals. The presented refineR algorithm separates the non-pathological distribution from the pathological distribution of observed test results using an inverse approach and identifies the model that best explains the non-pathological distribution. To evaluate its performance, we simulated test results from six common laboratory analytes with a varying location and fraction of pathological test results. Estimated reference intervals were compared to the ground truth, an alternative indirect method (kosmic), and the direct method (N = 120 and N = 400 samples). Overall, refineR achieved the lowest mean percentage error of all methods (2.77%). Analyzing the amount of reference intervals within ± 1 total error deviation from the ground truth, refineR (82.5%) was inferior to the direct method with N = 400 samples (90.1%), but outperformed kosmic (70.8%) and the direct method with N = 120 (67.4%). Additionally, reference intervals estimated from pediatric data were comparable to published direct method studies. In conclusion, the refineR algorithm enables precise estimation of reference intervals from real-world data and represents a viable complement to the direct method.

Funder

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference45 articles.

1. Jones, G. & Barker, A. Reference intervals. Clin. Biochem. Rev. 29(Suppl 1), S93–S97 (2008).

2. Horn, P. S. & Pesce, A. J. Reference intervals: An update. Clin. Chim. Acta 334, 5–23 (2003).

3. CLSI. Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline - Third Edition. CLSI EP28-A3C (2010).

4. Jones, G. R. D. et al. Indirect methods for reference interval determination—Review and recommendations. Clin. Chem. Lab. Med. 57, 20–29 (2018).

5. Ozarda, Y. Reference intervals: Current status, recent developments and future considerations. Biochem. Medica 26, 5–16 (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3