Field evaluation of sex pheromones and binding specificity of pheromone binding protein 4 in Tryporyza intacta (Lepidoptera: Crambidae)

Author:

Hu Yuwei,Liu Yuying,Bi Jie,Chen Ya,Zheng Ya,Mao Yongkai,Mao Yuling,Xu Hanliang,Guan Chuxiong,Chen Yan,Ai Hui

Abstract

AbstractThe recognition of chemical signal including volatile odorants and pheromones is very important in the olfactory physiological behaviors of insects, such as avoiding predators, seeking food and mating partners. The sugarcane borer, Tryporyza intacta is the most harmful insect in sugarcane region in Southeast Asia and Southern China, however, the study of their molecular biology and physiology was limited. Here we demonstrated that the sex pheromone (E11-16:Ald: Z11-16:Ald = 7:3) were most effective to T. intacta. In addition, compared the traditional rubber lure, a new microsphere formulation lure can optimize the trapping effect and might be widely used in the sugarcane growing area. To obtain a better understanding of the olfactory molecular mechanism of pheromone-based mate recognition system, we have cloned the full-length gene of the TintPBP4 and expressed in Escherichia coli. Our phylogenetic analysis highlighted that the TintPBP4 was highly conserved among diverse species of Lepidoptera. Furthermore, the results of QRT-PCR demonstrated that TintPBP4 transcripts were abundantly expressed in the antennae of T. intacta, especially in the male adults. The fluorescence binding experiments showed the TintPBP4 exhibited strong binding capacities to the sex pheromone components. These results will not only provide more understanding for the functional analysis of olfactory proteins from T. intacta, but also assist in the exploitation and development of sex pheromones in the integrated biological control of this pest.

Funder

National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3