Control of breathing by orexinergic signaling in the nucleus tractus solitarii

Author:

Wang Yakun,Deng Tianjiao,Zhao Xue,Shao Liuqi,Chen Jinting,Fu Congrui,He Wei,Wang Xiaoyi,Wang Hanqiao,Yuan Fang,Wang Sheng

Abstract

AbstractOrexin signaling plays a facilitatory role in respiration. Abnormalities in orexin levels correlate with disordered breathing patterns and impaired central respiratory chemoreception. Nucleus tractus solitarii (NTS) neurons expressing the transcription factor Phox2b contribute to the chemoreceptive regulation of respiration. However, the extent to which orexinergic signaling modulates respiratory activity in these Phox2b-expressing NTS neurons remains unclear. In the present study, the injection of orexin A into the NTS significantly increased the firing rate of the phrenic nerve. Further analysis using fluorescence in situ hybridization and immunohistochemistry revealed that orexin 1 receptors (OX1Rs) were primarily located in the ventrolateral subdivision of the NTS and expressed in 25% of Phox2b-expressing neurons. Additionally, electrophysiological recordings showed that exposure to orexin A increased the spontaneous firing rate of Phox2b-expressing neurons. Immunostaining experiments with cFos revealed that the OX1R-residing Phox2b-expressing neurons were activated by an 8% CO2 stimulus. Crucially, OX1R knockdown in these NTS neurons notably blunted the ventilatory response to 8% CO2, alongside an increase in sigh-related apneas. In conclusion, orexinergic signaling in the NTS facilitates breathing through the activation of OX1Rs, which induces the depolarization of Phox2b-expressing neurons. OX1Rs are essential for the involvement of Phox2b-expressing NTS neurons in the hypercapnic ventilatory response.

Funder

Natural Science Foundation of Hebei Province

Hebei Province Government Grant

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3