Land use influences stream bacterial communities in lowland tropical watersheds

Author:

Chavarria Karina A.,Saltonstall Kristin,Vinda Jorge,Batista Jorge,Lindmark Megan,Stallard Robert F.,Hall Jefferson S.

Abstract

AbstractLand use is known to affect water quality yet the impact it has on aquatic microbial communities in tropical systems is poorly understood. We used 16S metabarcoding to assess the impact of land use on bacterial communities in the water column of four streams in central Panama. Each stream was influenced by a common Neotropical land use: mature forest, secondary forest, silvopasture and traditional cattle pasture. Bacterial community diversity and composition were significantly influenced by nearby land uses. Streams bordered by forests had higher phylogenetic diversity (Faith’s PD) and similar community structure (based on weighted UniFrac distance), whereas the stream surrounded by traditional cattle pasture had lower diversity and unique bacterial communities. The silvopasture stream showed strong seasonal shifts, with communities similar to forested catchments during the wet seasons and cattle pasture during dry seasons. We demonstrate that natural forest regrowth and targeted management, such as maintaining and restoring riparian corridors, benefit stream-water microbiomes in tropical landscapes and can provide a rapid and efficient approach to balancing agricultural activities and water quality protection.

Funder

Edward M. and Jeanne C. Kashian and the Simons Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3