Evolutionary analysis of rainstorm momentum and non-stationary variating patterns in response to climatic changes across diverse terrains

Author:

Huang Chien-Lin,Hsu Nien-Sheng

Abstract

AbstractThis study aims to analyze time-series measurements encompassing rainstorm events with over a century of datasets to identify rainstorm evolution and dimensional transitions in non-stationarity. Rainstorm events are identified using partial duration series (PDS) to extract changes in rainstorm characteristics, namely maximum intensity (MAXI), duration (D), total rainfall (TR), and average rainfall intensity (ARI), in response to climate change. Ensemble empirical mode decomposition is used for trend filtering and non-stationary identification to explore spatiotemporal insight patterns. Trend models for the first–second-order moments of rainstorm characteristics are used to formulate the identified mean–variance trends using combined multi-dimensional linear-parabolic regression. Best-fitting combinations of various distributions (probability density functions) and trend models for multiple characteristic series are identified based on the Akaike information criterion. We analyze the dimensional transition in rainfall non-stationarity based on sensitivity analysis using PDS to determine its natural geophysical causes. The integrated methodology was applied to the data retrieved from nine weather stations in Taiwan. Our findings reveal rainstorm characteristics of “short D but high rainfall intensity” or “lower MAXI but high TR” across multiple stations. The parabolic trend of the first-order moment (i.e., mean) of ARI, D, and TR appears at the endpoint of the mountain ranges. Areas receiving monsoons and those on the windward plain show a rising parabolic trend in the first- and second-order moments (i.e., mean–variance) characterizing MAXI, implying that the occurrence frequency and magnitude of extreme MAXI increases. Non-stationary transitions in MAXI appear for mountain ranges exposed to the monsoon co-movement effect on both windward and leeward sides. Stations in the plains and rift valleys show upgraded and downgraded transitions in the non-stationary dimensions for D, respectively.

Funder

National Science and Technology Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3