Author:
Kim Young-Wook,Tochigi Eita,Tatami Junichi,Kim Yong-Hyeon,Jang Seung Hoon,Javvaji Srivani,Jung Jeil,Kim Kwang Joo,Ikuhara Yuichi
Abstract
AbstractSilicon carbide (SiC) bicrystals were prepared by diffusion bonding, and their grain boundary was observed using scanning transmission electron microscopy. The n-type electrical conductivity of a SiC single crystal was confirmed by scanning nonlinear dielectric microscopy (SNDM). Dopant profiling of the sample by SNDM showed that the interface acted as an electrical insulator with a ~2-μm-thick carrier depletion layer. The carrier depletion layer contained a higher number of oxygen impurities than the bulk crystals due to the incorporation of oxygen from the native oxide film during diffusion bonding. Density functional theory calculations of the density of states as a function of the bandgap also supported these findings. The existence of a carrier depletion layer was also confirmed in a p-type polycrystalline SiC ceramic. These results suggest that the electrical conductivity of SiC ceramics was mostly affected by carrier depletion near the grain boundary rather than the grain boundary itself.
Funder
National Research Foundation of Korea
Ministry of Education, Science and Technology
Ministry of Education, Culture, Sports, Science, and Technology, Japan
Japan Society for the Promotion of Science
Ministry of Trade, Industry and Energy
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献