Enhancing heat transfer at low temperatures by laser functionalization of the inner surface of metal pipes

Author:

Holder Daniel,Peter Alexander,Kirsch Marc,Cáceres Sergio,Weber Rudolf,Onuseit Volkher,Kulenovic Rudi,Starflinger Jörg,Graf Thomas

Abstract

AbstractThe latent heat transfer during vapour condensation in the condenser section of passive heat transport devices such as the two-phase closed thermosiphon is limited by film condensation. Dropwise condensation provides an increase of the heat transfer coefficient by up to one order of magnitude and can be achieved with a water-repellant surface. The inner surface of pipes made from stainless steel was functionalized by laser surface texturing with ultrashort laser pulses and subsequent storage in a liquid containing long-chained hydrocarbons. The pipes were separated into half-pipes by wire eroding to enable laser texturing of the inner surface, and were then joined by electron beam welding after laser texturing. As a result, superhydrophobic and water-repellent surfaces with a contact angle of 153° were obtained on the inner surface of the pipes with a length of up to 1 m. The functionalized pipes were used in the condenser section of a two-phase closed thermosiphon to demonstrate a heat transfer rate of 0.92 kW at 45 °C, which is approximately three times the heat transfer rate of 0.31 kW of a smooth reference pipe.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3