Enhancement of solar evacuated tube unit filled with nanofluid implementing three lobed storage unit equipped with fins

Author:

Mousavi S. M.,Sheikholeslami M.

Abstract

AbstractThis study discusses an evacuated tube collector-type solar water heater (ETCSWH) using a phase change material (PCM) chamber with fins, nanofluid, and nano-enhanced phase change material (NEPCM). First, the charging phenomena in a horizontal triplex tube heat exchanger (TTHX) equipped with fins, natural convection, and an ETCSWH system without PCM is simulated to validate the solution. The impact of adding fins and nanoparticles with a volume fraction of 3% of Al2O3 and Cu to paraffin wax and water-based fluid, respectively, on the unit's efficiency has been examined. The proposed system for the PCM melting process, heat storage, fluid flow behavior in the system, and velocity distribution and temperature contour in the storage tank and three parts of the absorber tube have been evaluated using ANSYS FLUENT software in a three-dimensional and transient simulation. The results show that Case 8 has improved by 39.7% compared to Case 1 and Case 4 by 5.2% compared to Case 1 within 4 h of the melting process. Also, Case 8 with a 43% and 6.4% shorter melting time than Cases 1 and 5 has the best performance and the greatest heat transfer rate. The productivity of the ETCSWH system is considerably enhanced by the use of fins, NEPCM, and nanofluid.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3