A conditional GAN-based approach for enhancing transfer learning performance in few-shot HCR tasks

Author:

Elaraby Nagwa,Barakat Sherif,Rezk Amira

Abstract

AbstractSupervised learning with the restriction of a few existing training samples is called Few-Shot Learning. FSL is a subarea that puts deep learning performance in a gap, as building robust deep networks requires big training data. Using transfer learning in FSL tasks is an acceptable way to avoid the challenge of building new deep models from scratch. Transfer learning methodology considers borrowing the architecture and parameters of a previously trained model on a large-scale dataset and fine-tuning it for low-data target tasks. But practically, fine-tuning pretrained models in target FSL tasks suffers from overfitting. The few existing samples are not enough to correctly adjust the pretrained model’s parameters to provide the best fit for the target task. In this study, we consider mitigating the overfitting problem when applying transfer learning in few-shot Handwritten Character Recognition (HCR) tasks. A data augmentation approach based on Conditional Generative Adversarial Networks is introduced. CGAN is a generative model that can create artificial instances that appear more real and indistinguishable from the original samples. CGAN helps generate extra samples that hold the possible variations of human handwriting instead of applying traditional image transformations. These transformations are low-level, data-independent operations, and only produce augmented samples with limited diversity. The introduced approach was evaluated in fine-tuning the three pretrained models: AlexNet, VGG-16, and GoogleNet. The results show that the samples generated by CGAN can enhance transfer learning performance in few-shot HCR tasks. This is by achieving model fine-tuning with fewer epochs and by increasing the model’s $$F1-score$$ F 1 - s c o r e and decreasing the Generalization Error $$(E_{test})$$ ( E test ) .

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3