Impact of foot progression angle on spatiotemporal and plantar loading pattern in intoeing children during gait

Author:

Cao Yuqing,Zhuang Hanjie,Zhang Xinhui,Guo Ruoyi,Pang Haotian,Zheng Pengfei,Xu Hang

Abstract

AbstractIntoeing in children is a common parental concern, but our understanding of the impact of foot progression angle (FPA) in these children leaves remains limited. This study examines the relationship between FPA and plantar loading pattern, as well as gait symmetry in children with intoeing. The sample included 30 children with intoeing caused by internal tibial torsion, uniformly divided into three groups: unilateral intoeing, bilateral mild intoeing, and bilateral mild-moderate intoeing. The relationship between FPA and plantar loading pattern, and gait symmetry within and among groups were assessed using dynamic pedobarographic and spatiotemporal data. Results indicated a significant correlation between FPA and peak pressure, maximum force, and plantar impulse in the medial and central forefoot, and also the medial and lateral heel zones for both bilateral intoeing groups. Significant differences were observed only in subdivided stance phase, including loading response, single support, and pre-swing phases, between the unilateral intoeing and bilateral mild intoeing groups. These findings suggest that FPA significantly affects the forefoot and heel zones, potentially increasing the load on the support structures and leading to transverse arch deformation. While children with intoeing demonstrate a dynamic self-adjustment capability to maintain gait symmetry, this ability begins to falter as intoeing becomes more pronounced.

Funder

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Primary Research & Development Plan (Social Development) of Jiangsu Province

Young medical talents project of science and education health project in Jiangsu Province

Research Project of China Disabled Persons' Federation - on assistive technology

Integration and Innovation project of Xuzhou Medical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3