Deep learning approach for an interface structure analysis with a large statistical noise in neutron reflectometry

Author:

Aoki Hiroyuki,Liu Yuwei,Yamashita Takashi

Abstract

AbstractNeutron reflectometry (NR) allows us to probe into the structure of the surfaces and interfaces of various materials such as soft matters and magnetic thin films with a contrast mechanism dependent on isotopic and magnetic states. The neutron beam flux is relatively low compared to that of other sources such as synchrotron radiation; therefore, there has been a strong limitation in the time-resolved measurement and further advanced experiments such as surface imaging. This study aims at the development of a methodology to enable the structural analysis by the NR data with a large statistical error acquired in a short measurement time. The neural network-based method predicts the true NR profile from the data with a 20-fold lower signal compared to that obtained under the conventional measurement condition. This indicates that the acquisition time in the NR measurement can be reduced by more than one order of magnitude. The current method will help achieve remarkable improvement in temporally and spatially resolved NR methods to gain further insight into the surface and interfaces of materials.

Funder

JST-Mirai Program

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3