Self-assembled nanorods in YBCO matrix – a computational study of their effects on critical current anisotropy

Author:

Rivasto Elmeri,Khan Mukarram Zaman,Malmivirta Mika,Rijckaert Hannes,Aye Moe Moe,Hynninen Teemu,Huhtinen Hannu,Driessche Isabel Van,Paturi Petriina

Abstract

AbstractIn order to understand how the doping with self-assembled nanorods of different sizes and concentrations as well as applied magnetic fields affect the critical current anisotropy in YBa2Cu3O7−x (YBCO) thin films close to YBCO c-axis, we present an extensive and systematic computational study done by molecular dynamics simulation. The simulations are also used to understand experimentally measured Jc(θ) curves for BaHfO3, BaZrO3 and BaSnO3 doped YBCO thin films with the help of nanorod parameters obtained from transmission electron microscopy measurements. Our simulations reveal that the relation between applied and matching field plays a crucial role in the formation of Jc(θ)-peak around YBCO c-axis (c-peak) due to vortex-vortex interactions. We also find how different concentrations of different size nanorods effect the shape of the c-peak and explain how different features, such as double c-peak structures, arise. In addition to this, we have quantitatively explained that, even in an ideal superconductor, the overdoping of nanorods results in decrease of the critical current. Our results can be widely used to understand and predict the critical current anisotropy of YBCO thin films to improve and develop new pinscapes for various transport applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3