Oxidative damage contributes to bisphenol S-induced development block at 2-cell stage preimplantation embryos in mice through inhibiting of embryonic genome activation

Author:

Ning Anfeng,Xiao Nansong,Wang Hu,Guan Chunyi,Ma Xu,Xia HongfeiORCID

Abstract

AbstractAlthough bisphenol S (BPS), as a bisphenol A (BPA) substitute, has been widely used in the commodity, it is embryotoxic in recent experiments. Nowadays, it remains unclear how BPS affects preimplantation embryos. Here, my team investigated the effects of BPS on preimplantation embryos and the possible molecular mechanisms in mice. The results showed that 10–6 mol/L BPS exposure delayed the blastocysts stage, and exposure to 10–4 mol/L BPS induced 2-cell block in mice preimplantation embryos. A significant increase in reactive oxygen species (ROS) level and antioxidant enzyme genes Sod1, Gpx1, Gpx6, and Prdx2 expression were shown, but the level of apoptosis was normal in 2-cell blocked embryos. Further experiments demonstrated that embryonic genome activation (EGA) specific genes Hsp70.1 and Hsc70 were significantly decreased, which implied that ROS and EGA activation have the potential to block 2-cell development. Antioxidant enzymes, including superoxide dismutase (SOD), coenzyme Q10 (CoQ10), and folic acid (FA) were used to further explore the roles of ROS and EGA in 2-cell block. Only 1200 U/mL SOD was found to alleviate the phenomenon of 2-cell block, reduce oxidative damage, and restore the expression of EGA-specific genes Hsp70.1 and Hsc70. Conclusively, this study demonstrates for the first time that BPS can induce 2-cell block, which is mainly mediated by ROS aggregation and results in the failure of EGA activation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3