Optimizing support vector machine (SVM) by social spider optimization (SSO) for edge detection in colored images

Author:

Wang Jianfei

Abstract

AbstractEdge detection in images is a vital application of image processing in fields such as object detection and identification of lesion regions in medical images. This problem is more complex in the domain of color images due to the combination of color layer information and the need to achieve a unified edge boundary across these layers, which increases the complexity of the problem. In this paper, a simple and effective method for edge detection in color images is proposed using a combination of support vector machine (SVM) and the social spider optimization (SSO) algorithm. In the proposed method, the input color image is first converted to a grayscale image, and an initial estimation of the image edges is performed based on it. To this end, the proposed method utilizes an SVM with a Radial Basis Function (RBF) kernel, in which the model's hyperparameters are tuned using the SSO algorithm. After the formation of initial image edges, the resulting edges are compared with pairwise combinations of color layers, and an attempt is made to improve the edge localization using the SSO algorithm. In this step, the optimization algorithm's task is to refine the image edges in a way that maximizes the compatibility with pairwise combinations of color layers. This process leads to the formation of prominent image edges and reduces the adverse effects of noise on the final result. The performance of the proposed method in edge detection of various color images has been evaluated and compared with similar previous strategies. According to the obtained results, the proposed method can successfully identify image edges more accurately, as the edges identified by the proposed method have an average accuracy of 93.11% for the BSDS500 database, which is an increase of at least 0.74% compared to other methods.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3