Fatty acid tryptamide from cacao elongates Drosophila melanogaster lifespan with sirtuin-dependent heat shock protein expression

Author:

Kanno Kiko,Kayashima Yasunari,Tamura Kazuji,Miyara Takako,Baba Kento,Koganei Megumi,Natsume Midori,Imai Shinjiro

Abstract

AbstractLife span is increasing in developed countries as Japan, and an aging society is becoming a problem. In fact, healthy lifespan is not extended, and it is desired to extend it by functional food. Cacao (Theobroma cacao) contains various active components and is considered a preventative agent against metabolic disease. In addition, it has long been thought that regular cacao intake extends a healthy lifespan. However, there is no direct evidence for this belief. The purpose of this study is to identify the cacao component that elongate the lifespan of D. melanogaster as a model organism and to elucidate its functional mechanism. The activation of sirtuins, a family of NAD+-dependent deacetylases, has been reported to extend the lifespans of various organisms. Heat shock factor 1 is known to be deacetylated by reaction with sirtuins, thereby inducing gene expression of various heat shock proteins by heat stress and effectively extending the lifespan of organisms. Therefore, we evaluated whether components in cacao activate sirtuins and extend the lifespan of D. melanogaster. In the process, we discovered the fatty acid tryptamide as a lifespan-elongating component of cacao. Therefore, we investigated whether the fatty acid tryptamide from cacao upregulates the genes of heat shock proteins. As a result, it was confirmed that the gene expression of multiple heat shock proteins was significantly increased. This suggests that fatty acid tryptamide may activate sirtuins, increase gene expression of heat shock proteins, and elongate the lifespan of D. melanogaster.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3