ClinicalGAN: powering patient monitoring in clinical trials with patient digital twins

Author:

Chandra Shantanu,Prakash P. K. S.,Samanta Subhrajit,Chilukuri Srinivas

Abstract

AbstractConducting clinical trials is becoming increasingly challenging lately due to spiraling costs, increased time to market, and high failure rates. Patient recruitment and retention is one of the key challenges that impact 90% of the trials directly. While a lot of attention has been given to optimizing patient recruitment, limited progress has been made towards developing comprehensive clinical trial monitoring systems to determine patients at risk and potentially improve patient retention through the right intervention at the right time. Earlier research in patient retention primarily focused on using deterministic frameworks to model the inherently stochastic patient journey process. Existing generative approaches to model temporal data such as TimeGAN or CRBM , face challenges and fail to address key requirements such as personalized generation, variable patient journey, and multi-variate time-series needed to model patient digital twin. In response to these challenges, current research proposes ClinicalGAN to enable patient level generation, effectively creating a patient’s digital twin. ClinicalGAN provides capabilities for: (a) patient-level personalized generation by utilizing patient meta-data for conditional generation; (b) dynamic termination prediction to enable pro-active patient monitoring for improved patient retention; (c) multi-variate time-series training to incorporate relationship and dependencies among different tests measures captured during patient journey. The proposed solution is validated on two Alzheimer’s clinical trial datasets and the results are benchmarked across multiple dimensions of generation quality. Empirical results demonstrate that the proposed ClinicalGAN outperforms the SOTA approach by 3–4$$\times $$ × on average across all the generation quality metrics. Furthermore, the proposed architecture is shown to outperform predictive methods at the task of drop-off prediction significantly (5–10% MAPE scores).

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3