Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation

Author:

Lee Sarada M. W.,Shaw Andrew,Simpson Jodie L.,Uminsky David,Garratt Luke W.

Abstract

AbstractDifferential cell counts is a challenging task when applying computer vision algorithms to pathology. Existing approaches to train cell recognition require high availability of multi-class segmentation and/or bounding box annotations and suffer in performance when objects are tightly clustered. We present differential count network (“DCNet”), an annotation efficient modality that utilises keypoint detection to locate in brightfield images the centre points of cells (not nuclei) and their cell class. The single centre point annotation for DCNet lowered burden for experts to generate ground truth data by 77.1% compared to bounding box labeling. Yet centre point annotation still enabled high accuracy when training DCNet on a multi-class algorithm on whole cell features, matching human experts in all 5 object classes in average precision and outperforming humans in consistency. The efficacy and efficiency of the DCNet end-to-end system represents a significant progress toward an open source, fully computationally approach to differential cell count based diagnosis that can be adapted to any pathology need.

Funder

National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference43 articles.

1. Horobin, R. How Romanowsky stains work and why they remain valuable—Including a proposed universal Romanowsky staining mechanism and a rational troubleshooting scheme. Biotech. Histochem. 86, 36–51. https://doi.org/10.3109/10520295.2010.515491 (2011).

2. De Brauwer, E. I. et al. Differential cell analysis of cytocentrifuged bronchoalveolar fluid samples affected by the area counted. Anal. Quant. Cytol. Histol. 22, 143–149 (2000).

3. De Brauwer, E. I. G. B., Jacobs, J. A., Nieman, F., Bruggeman, C. A. & Drent, M. Bronchoalveolar lavage fluid differential cell count. How many cells should be counted? Anal. Quant. Cytol. Histol. 24, 337–41 (2002).

4. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation (Springer, 2015).

5. Vuola, A. O., Akram, S. U. & Kannala, J. Mask-RCNN and U-Net Ensembled for Nuclei Segmentation. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 208–212 (IEEE, 2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3