A hybrid artificial intelligence approach for modeling the carbonation depth of sustainable concrete containing fly ash

Author:

Kazemi Ramin

Abstract

AbstractOne of the major challenges in the civil engineering sector is the durability of reinforced concrete structures against carbonation during the physico-chemical process of interaction of hydrated cementitious composites with carbon dioxide. This aggressive process causes carbon penetration into the reinforcement part, which affects the behavior of the structure during its lifetime due to corrosion risk. A countermeasure is using alternative cementitious materials to improve concrete texture and resist increased carbonation depth (CD). Considering that the CD test requires a long time and a skilled technician, this study strives to provide an alternative approach by moving from traditional laboratory-based methods towards artificial intelligence (AI) techniques for modeling the CD of sustainable concrete containing fly ash (CCFA). Despite the development of single AI models so far, it is undeniable that utilizing metaheuristic optimization techniques in the form of hybrid models can improve their performance. To this end, a new hybrid model from the integration of biogeography-based optimization (BBO) technique with artificial neural network (ANN) is developed for the first time to estimate the CD of CCFA. The error distribution results revealed that 59% of the ANN predictions had errors within the range of (− 1 mm, 1 mm], while the corresponding percentage for the ANN-BBO predictions was 70%, indicating an 11% reduction in the prediction errors by the proposed hybrid model. Furthermore, A10-index highlighted a performance improvement of 78% for the hybrid model, which met the closeness of the predicted values to the observed ones, so that the value of this index for models of ANN and ANN-BBO was 0.5019 and 0.8947, respectively. Analyzing the cross-validation confirmed the reliability and generalizability of the developed model. Also, the three most influential variables in estimating the CD were exposure time (27%), carbon dioxide concentration (22%), and water/binder (18%), respectively. Finally, the superiority of the ANN-BBO model was verified by comparing it with previous studies’ models.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3