On the instability of the giant direct magnetocaloric effect in CoMn0.915Fe0.085Ge at. % metamagnetic compounds

Author:

Bruno N. M.,Yuce S.

Abstract

AbstractThe giant magnetocaloric effect was quantified in CoMn1-xFexGe (x = 0.085–0.12) nom. at. % polycrystals across the high temperature hexagonal (P63/mmc) to low temperature orthorhombic (Pnma) phase transition via differential scanning calorimetry (DSC) and multiple (thermo) magnetization measurements. It was found that increasing Fe content led to the decrease of both the martensitic transformation temperature and entropy change ($$\Delta S$$ Δ S ) at the point of the phase transition. Moreover, first-time magnetocaloric measurements resulted in irreproducible entropy change versus temperature diagrams, which was attributed to the release of internal pressure in bulk samples that disintegrated into powder upon transformation. CoMn1-xFexGe demonstrated larger magnetic field-induced entropy changes and giant magnetocaloric effect (MCE) compared to other CoMnGe alloys doped with Si, Sn, Ti, and Ga. However, the observed brittleness and apparent change in volume at the magnetic transition was posited to influence the material’s potential for regenerative applications.

Funder

Department of Mechanical Engineering, South Dakota School of Mines and Technology

MESAM Laboratory, Texas A

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3