Analysis of flow rate of continuous bladder irrigation according to the height of the irrigation infusion set

Author:

Yang Boeun,Han Jeongwon

Abstract

AbstractThis is a control volume analysis to examine the flow rate of irrigation fluid according to the size of indwelling catheter and the height of the fluid bag in consideration of the temperature of irrigation fluid and intra-bladder pressure during continuous bladder irrigation. In case of minimum bladder pressure with room temperature, the flow rates were − 0.045 to 0.993 cc/sec for 18Fr, − 0.053 to 1.176 cc/sec for 20Fr, − 0.055 to 1.227 cc/sec for 22Fr, and − 0.055 to 1.243 cc/sec for 24Fr. In case of maximum bladder pressure with room temperature, the flow rates were − 0.180 to 0.868 cc/sec for 18Fr, − 0.212 to 1.028 cc/sec for 20Fr, − 0.220 to 1.072 cc/sec for 22Fr, and − 0.223 to 1.086 cc/sec for 24Fr. In case of minimum bladder pressure with cold fluid, the flow rates were − 0.028 to 0.365 cc/sec for 18Fr, − 0.033 to 0.749 cc/sec for 20Fr, − 0.034 to 0.781 cc/sec for 22Fr, and − 0.035 to 0.791 cc/sec for 24Fr. In case of maximum bladder pressure with cold fluid, the flow rates were − 0.112 to 0.553 cc/sec for 18Fr, − 0.131 to 0.653 cc/sec for 20Fr, − 0.137 to 0.681 cc/sec for 22Fr, and − 0.139 to 0.689 cc/sec for 24Fr. This study is significant in that it utilized a fluid dynamics approach to provide basic data for continuous bladder wash care. Through the findings of this study, nurses can plan the exchange time of irrigation fluid and the pattern of urinary drainage when performing continuous bladder irrigation. It is also inferred that there may be an advantage in not having to calculate additional material costs for using an infusion pump for patients by determining the hourly injection rate of irrigation fluid based on the height of the infusion set's drop chamber.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3