Bismuth fire assay preconcentration and empirical coefficient LA-ICP-MS for the determination of ultra-trace Pt and Pd in geochemical samples

Author:

Ni Wenshan,Mao Xiangju,Yao Mingxing,Guo Xiaorui,Sun Qiliang,Gao Xiaofei,Zhang Hongli

Abstract

AbstractIn this work, a novel method of solid sample pretreatment technique of bismuth fire assay (Bi-FA) combined with solid sample determination by laser ablation ICP-MS (LA-ICP-MS) was reported for the determination of ultra-trace Pt and Pd in geochemical samples. Bismuth oxide (Bi2O3) was used as fire assay collector to directly enrich Pt and Pd from solid samples, and Ag protection cupellation was employed to generate Ag granules. After cleaning, weighing and annealing, the Ag granules were compressed into thin slices and determined by LA-ICP-MS for 195Pt, 105Pd and 109Ag (109Ag was selected as the internal standard isotope). Bi2O3 provided exceptionally low blanks compared to nickel oxide and lead oxide commonly employed in fire assay procedures, and could be applied directly without purification. Different from traditional empirical coefficient method, the Chinese Certified Reference Materials (CRMs) for Pt and Pd were treated by the same procedure to obtain completely matrix matched Ag slices. And then modified empirical coefficient method and internal standard calibration strategy was used to reduce the instability of LA-ICP-MS, and random multipoint laser ablation was employed to further reduce analytical variation resulting from heterogeneity of Pt and Pd in the Ag slice. Under optimal conditions, excellent calibration curves for Pt and Pd were obtained (0.407–2958 μg g−1 and 0.407–2636 μg g−1, respectively), with correlation coefficients exceeding 0.9996. The method detection limits for Pt and Pd were 0.074 and 0.037 ng g−1, respectively. The established method was applied successfully to analysis of real geochemical samples, with determined values in good agreement with the results of traditional Pb-FA graphite furnace atomic absorption spectrometry (GF-AAS), and spiked recoveries between 87.8 and 125.0%.

Funder

National Natural Science Foundation of PR China

Geological Survey Program of China Geological Survey

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3