Determination of vat-photopolymerization parameters for microneedles fabrication and characterization of HPMC/PVP K90 dissolving microneedles utilizing 3D-printed mold

Author:

Chanabodeechalermrung Baramee,Chaiwarit Tanpong,Udomsom Suruk,Rachtanapun Pornchai,Piboon Promporn,Jantrawut Pensak

Abstract

AbstractThree-dimensional (3D) printing serves as an alternative method for fabricating microneedle (MN) patches with a high object resolution. In this investigation, four distinct needle shapes: pyramid mounted over a long cube (shape A), cone mounted over a cylinder (shape B), pyramidal shape (shape C), and conical shape (shape D) were designed using computer-aided design (CAD) software with compensated bases of 350, 450 and 550 µm. Polylactic acid (PLA) biophotopolymer resin from eSun and stereolithography (SLA) 3D printer from Anycubic technology were used to print MN patches. The 3D-printed MN patches were employed to construct MN molds, and those molds were used to produce hydroxypropyl methylcellulose (HPMC) and polyvinyl pyrrolidone (PVP) K90 dissolving microneedles (DMNs). Various printing parameters, such as curing time, printing angle, and anti-aliasing (AA), were varied to evaluate suitable printing conditions for each shape. Furthermore, physical appearance, mechanical property, and skin insertion ability of HPMC/PVP K90 DMNs were examined. The results showed that for shape A and C, the suitable curing time and printing angle were 1.5 s and 30° while for shapes B and D, they were 2.0 s and 45°, respectively. All four shapes required AA to eliminate their stair-stepped edges. Additionally, it was demonstrated that all twelve designs of 3D-printed MN patches could be employed for fabricating MN molds. HPMC/PVP K90 DMNs with the needles of shape A and B exhibited better physicochemical properties compared to those of shape C and D. Particularly, both sample 9 and 10 displayed sharp needle without bent tips, coupled with minimal height reduction (< 10%) and a high percentage of blue dots (approximately 100%). As a result, 3D printing can be utilized to custom construct 3D-printed MN patches for producing MN molds, and HPMC/PVP K90 DMNs manufactured by those molds showed excellent physicochemical properties.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3