Predicting a kidney transplant patient’s pre-transplant functional status based on information from waitlist registration

Author:

Mark EthanORCID,Goldsman DavidORCID,Gurbaxani BrianORCID,Keskinocak PinarORCID,Sokol JoelORCID

Abstract

AbstractWith over 100,000 patients on the kidney transplant waitlist in 2019, it is important to understand if and how the functional status of a patient may change while on the waitlist. Recorded both at registration and just prior to transplantation, the Karnofsky Performance Score measures a patient’s functional status and takes on values ranging from 0 to 100 in increments of 10. Using machine learning techniques, we built a gradient boosting regression model to predict a patient’s pre-transplant functional status based on information known at the time of waitlist registration. The model’s predictions result in an average root mean squared error of 12.99 based on 5 rolling origin cross validations and 12.94 in a separate out-of-time test. In comparison, predicting that the pre-transplant functional status remains the same as the status at registration, results in average root mean squared errors of 14.50 and 14.11 respectively. The analysis is based on 118,401 transplant records from 2007 to 2019. To the best of our knowledge, there has been no previously published research on building a model to predict kidney pre-transplant functional status. We also find that functional status at registration and total serum albumin, have the most impact in predicting the pre-transplant functional status.

Funder

Carlos and Marguerite Mason Trust

Laura and John Arnold Foundation

Georgia Tech benefactors: William W. George, Andrea Laliberte, Claudia L. and J. Paul Raines, and Richard E. “Rick” and Charlene Zalesky

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3