Comparative performance analysis of binary variants of FOX optimization algorithm with half-quadratic ensemble ranking method for thyroid cancer detection

Author:

Sharma Rohit,Mahanti Gautam Kumar,Panda Ganapati,Rath Adyasha,Dash Sujata,Mallik Saurav,Zhao Zhongming

Abstract

AbstractThyroid cancer is a life-threatening condition that arises from the cells of the thyroid gland located in the neck’s frontal region just below the adam’s apple. While it is not as prevalent as other types of cancer, it ranks prominently among the commonly observed cancers affecting the endocrine system. Machine learning has emerged as a valuable medical diagnostics tool specifically for detecting thyroid abnormalities. Feature selection is of vital importance in the field of machine learning as it serves to decrease the data dimensionality and concentrate on the most pertinent features. This process improves model performance, reduces training time, and enhances interpretability. This study examined binary variants of FOX-optimization algorithms for feature selection. The study employed eight transfer functions (S and V shape) to convert the FOX-optimization algorithms into their binary versions. The vision transformer-based pre-trained models (DeiT and Swin Transformer) are used for feature extraction. The extracted features are transformed using locally linear embedding, and binary FOX-optimization algorithms are applied for feature selection in conjunction with the Naïve Bayes classifier. The study utilized two datasets (ultrasound and histopathological) related to thyroid cancer images. The benchmarking is performed using the half-quadratic theory-based ensemble ranking technique. Two TOPSIS-based methods (H-TOPSIS and A-TOPSIS) are employed for initial model ranking, followed by an ensemble technique for final ranking. The problem is treated as multi-objective optimization task with accuracy, F2-score, AUC-ROC and feature space size as optimization goals. The binary FOX-optimization algorithm based on the $$V_1$$ V 1 transfer function achieved superior performance compared to other variants using both datasets as well as feature extraction techniques. The proposed framework comprised a Swin transformer to extract features, a Fox optimization algorithm with a V1 transfer function for feature selection, and a Naïve Bayes classifier and obtained the best performance for both datasets. The best model achieved an accuracy of 94.75%, an AUC-ROC value of 0.9848, an F2-Score of 0.9365, an inference time of 0.0353 seconds, and selected 5 features for the ultrasound dataset. For the histopathological dataset, the diagnosis model achieved an overall accuracy of 89.71%, an AUC-ROC score of 0.9329, an F2-Score of 0.8760, an inference time of 0.05141 seconds, and selected 12 features. The proposed model achieved results comparable to existing research with small features space.

Funder

National Institutes of Health

Precision Health Chair Professorship

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3