Continual proteomic divergence of HepG2 cells as a consequence of long-term spheroid culture

Author:

Ellero Andrea Antonio,van den Bout Iman,Vlok Maré,Cromarty Allan Duncan,Hurrell Tracey

Abstract

AbstractThree-dimensional models are considered a powerful tool for improving the concordance between in vitro and in vivo phenotypes. However, the duration of spheroid culture may influence the degree of correlation between these counterparts. When using immortalised cell lines as model systems, the assumption for consistency and reproducibility is often made without adequate characterization or validation. It is therefore essential to define the biology of each spheroid model by investigating proteomic dynamics, which may be altered relative to culture duration. As an example, we assessed the influence of culture duration on the relative proteome abundance of HepG2 cells cultured as spheroids, which are routinely used to model aspects of the liver. Quantitative proteomic profiling of whole cell lysates labelled with tandem-mass tags was conducted using liquid chromatography-tandem mass spectrometry (LC–MS/MS). In excess of 4800 proteins were confidently identified, which were shared across three consecutive time points over 28 days. The HepG2 spheroid proteome was divergent from the monolayer proteome after 14 days in culture and continued to change over the successive culture time points. Proteins representing the recognised core hepatic proteome, cell junction, extracellular matrix, and cell adhesion proteins were found to be continually modulated.

Funder

National Research Foundation

University of Pretoria

National Research Foundation, South Africa

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3