Impact behaviour of 3D printed cellular structures for mouthguard applications

Author:

Saunders John,Lißner Maria,Townsend David,Petrinic Nik,Bergmann Jeroen

Abstract

AbstractEthylene-Vinyl Acetate (EVA) is the most popular material for manufacturing mouthguards. However, EVA mouthguards are problematic, for example inconsistent thicknesses across the mouthguard. Additive manufacturing provides a promising solution to this problem, as it can manufacture mouthguards with a greater precision. This paper compares the energy dissipation of EVA, the current material used for mouthguards, to various designs of a 3D printed material, some of which contain air cells. Impact testing was carried out at three different strain rates. The Split-Hopkinson bar was used for medium and high strain rate tests, and an Instron test rig was used for low strain rate testing. The best performing design dissipated 25% more energy than EVA in the medium and high strain rate testing respectively while the low strain rate testing was inconclusive. This research has shown that additive manufacturing provides a viable method of manufacturing mouthguards. This opens up the opportunity for embedding electronics/sensors into additive manufactured mouthguards.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3