Longitudinal analyses of serum neurofilament light and associations with obesity indices and bioelectrical impedance parameters

Author:

Hermesdorf Marco,Leppert David,Maceski Aleksandra,Benkert Pascal,Wellmann Jürgen,Wiendl Heinz,Kuhle Jens,Berger Klaus

Abstract

AbstractNeurofilament light is a constituent of the neuronal cytoskeleton and released into the blood following neuro-axonal damage. It has previously been reported that NfL measured in blood serum is inversely related to body mass index. However, no reports exist with regard to body composition assessed using bioelectrical impedance analysis or other indicators of obesity beyond BMI. We analyzed the relationship between sNfL and body composition according to the three compartment model. Additionally, associations between sNfL, body shape index, waist-to-height ratio, and BMI were examined. The sample consisted of 769 participants assessed during the baseline examination and 693 participants examined in the course of the follow-up of the BiDirect Study. Associations between sNfL, BMI, BSI, and WtHR were separately analyzed using linear mixed models. Body compartments operationalized as fat mass, extracellular cell mass, and body cell mass were derived using BIA and the relationship with sNfL was analyzed with a linear mixed model. Lastly, we also analyzed the association between total body water and sNfL. We found significant inverse associations of sNfL with BMI and WtHR. The analysis of the three compartment model yielded significant inverse associations between sNfL, body cell mass and body fat mass, but not extracellular mass. Furthermore, total body water was also inversely related to sNfL. A potential mechanism could involve body cell mass and body fat mass as highly adaptive body constituents that either directly absorb sNfL, or promote the formation of new vasculature and thereby increase blood volume.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Bundesministerium für Bildung und Forschung

Westfälische Wilhelms-Universität Münster

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3