Author:
Suzawa Tetsuki,Iwama Ryo,Fukuda Ryouichi,Horiuchi Hiroyuki
Abstract
AbstractFilamentous fungi are eukaryotic microorganisms that differentiate into diverse cellular forms. Recent research demonstrated that phospholipid homeostasis is crucial for the morphogenesis of filamentous fungi. However, phospholipids involved in the morphological regulation are yet to be systematically analyzed. In this study, we artificially controlled the amount of phosphatidylcholine (PC), a primary membrane lipid in many eukaryotes, in a filamentous fungus Aspergillus oryzae, by deleting the genes involved in PC synthesis or by repressing their expression. Under the condition where only a small amount of PC was synthesized, A. oryzae hardly formed aerial hyphae, the basic structures for asexual development. In contrast, hyphae were formed on the surface or in the interior of agar media (we collectively called substrate hyphae) under the same conditions. Furthermore, we demonstrated that supplying sufficient choline to the media led to the formation of aerial hyphae from the substrate hyphae. We suggested that acyl chains in PC were shorter in the substrate hyphae than in the aerial hyphae by utilizing the strain in which intracellular PC levels were controlled. Our findings suggested that the PC levels regulate hyphal elongation and differentiation processes in A. oryzae and that phospholipid composition varied depending on the hyphal types.
Funder
Japan Science and Technology Agency
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC