Short-term streamflow modeling using data-intelligence evolutionary machine learning models

Author:

Martinho Alfeu D.,Hippert Henrique S.,Goliatt Leonardo

Abstract

AbstractAccurate streamflow prediction is essential for efficient water resources management. Machine learning (ML) models are the tools to meet this need. This paper presents a comparative research study focusing on hybridizing ML models with bioinspired optimization algorithms (BOA) for short-term multistep streamflow forecasting. Specifically, we focus on applying XGB, MARS, ELM, EN, and SVR models and various BOA, including PSO, GA, and DE, for selecting model parameters. The performances of the resulting hybrid models are compared using performance statistics, graphical analysis, and hypothesis testing. The results show that the hybridization of BOA with ML models demonstrates significant potential as a data-driven approach for short-term multistep streamflow forecasting. The PSO algorithm proved superior to the DE and GA algorithms in determining the optimal hyperparameters of ML models for each step of the considered time horizon. When applied with all BOA, the XGB model outperformed the others (SVR, MARS, ELM, and EN), best predicting the different steps ahead. XGB integrated with PSO emerged as the superior model, according to the considered performance measures and the results of the statistical tests. The proposed XGB hybrid model is a superior alternative to the current daily flow forecast, crucial for water resources planning and management.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference106 articles.

1. Brito, L. D., et al.: Cidadania e governação em moçambique (2008).

2. Wegayehu, E. B. & Muluneh, F. B. Multivariate streamflow simulation using hybrid deep learning models. Comput. Intell. Neurosci. 20, 21 (2021).

3. Mirjalili, S., Mirjalili, S. M. & Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014).

4. Goliatt, L., Sulaiman, S. O., Khedher, K. M., Farooque, A. A. & Yaseen, Z. M. Estimation of natural streams longitudinal dispersion coefficient using hybrid evolutionary machine learning model. Eng. App. Comput. Fluid Mech. 15(1), 1298–1320 (2021).

5. Saporetti, C. M., Fonseca, D. L., Oliveira, L. C., Pereira, E. & Goliatt, L. Hybrid machine learning models for estimating total organic carbon from mineral constituents in core samples of shale gas fields. Mar. Pet. Geol.https://doi.org/10.1016/j.marpetgeo.2022.105783 (2022).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3