Protein N-glycosylation aberrations and glycoproteomic network alterations in osteoarthritis and osteoarthritis with type 2 diabetes

Author:

Luo Yi,Wu Ziguang,Chen Song,Luo Huanhuan,Mo Xiaoying,Wang Yao,Tang Jianbang

Abstract

AbstractWhether the relationship between type 2 diabetes mellitus (T2DM) and osteoarthritis (OA) can be solely attributed to the shared risk factors, such as obesity, remains controversial. Several studies have revealed the critical role of abnormal glycosylation in the pathogenesis of OA and T2DM. Therefore, we speculate that T2DM may contribute to the pathogenesis of OA through the intrinsic mechanisms of N-glycosylation aberrations. Using N-glycoproteomics, we compared the changes in N-glycosylated protein abundance in cartilage samples from patients with OA without and with T2DM (DM-OA), and from patients with traumatic joint injury (NC) as controls. We identified 847 N-glycosylation sites corresponding to 729 peptides fragments from 374 proteins. The number of N-glycosylated proteins in the DM-OA group tended to decrease compared with that in the OA and NC groups. We identified 22 upregulated and 1 down-regulated N-glycosylated peptides in the OA group compared to the NC group, while only fibronectin 1 (FN1) at position N1007, cartilage intermediate layer protein 1 (CILP) at N346, and collagen type VI alpha 1 chain (COL6A1) at N804, were also identified in the DM-OA group. Compared to the OA group, the downregulation of secreted protein acidic and rich in cysteine (SPARC) at N116, collagen type VI alpha 1 chain (COL6A2) at N785, and asporin (ASPN) at N282, and the upregulation of complement component C8 alpha chain (C8α) at N437, were the most remarkable alterations in the DM-OA group. The differentially expressed N-glycosylated proteins between the OA and DM-OA groups were mainly located extracellularly and enriched in the KEGG pathways involving PI3K/Akt signaling, focal adhesion, and ECM-receptor interaction. Their predicted protein–protein interactions were also depicted. We were thus able to show the general characteristics of N-glycosylation aberrations in OA and DM-OA. Moreover, the upregulated glycosylated complement C8α in the DM-OA group might augment membrane attack complex activity, thereby exacerbating cartilage destruction. Although further confirmation is required, our hypothesis proposes a possible explanation for the deduction that T2DM is an independent risk factor for OA.

Funder

Medical and Healthcare Priority Projects Foundation of Zhongshan city

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3