With super SDMs (machine learning, open access big data, and the cloud) towards more holistic global squirrel hotspots and coldspots

Author:

Steiner Moriz,Huettmann F.,Bryans N.,Barker B.

Abstract

AbstractSpecies-habitat associations are correlative, can be quantified, and used for powerful inference. Nowadays, Species Distribution Models (SDMs) play a big role, e.g. using Machine Learning and AI algorithms, but their best-available technical opportunities remain still not used for their potential e.g. in the policy sector. Here we present Super SDMs that invoke ML, OA Big Data, and the Cloud with a workflow for the best-possible inference for the 300 + global squirrel species. Such global Big Data models are especially important for the many marginalized squirrel species and the high number of endangered and data-deficient species in the world, specifically in tropical regions. While our work shows common issues with SDMs and the maxent algorithm (‘Shallow Learning'), here we present a multi-species Big Data SDM template for subsequent ensemble models and generic progress to tackle global species hotspot and coldspot assessments for a more inclusive and holistic inference.

Funder

Upcoming grant

Oracle

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3