Author:
Estlack Zachary,Kim Jungkyu
Abstract
AbstractTo improve the versatility and robustness of microfluidic analytical devices for space exploration, a programmable microfluidic array (PMA) has been implemented to support a variety of missions. When designing a PMA, normally closed valves are advantageous to avoid cross contamination and leaking. However, a stable fabrication method is required to prevent these valves from sticking and bonding over time. This work presents how polydimethylsiloxane (PDMS) can be bonded selectively using chemical passivation to overcome PDMS sticking issue during long-term space exploration. First, on a PDMS stamp, the vaporized perfluorooctyl-trichlorosilane (PFTCS) are deposited under − 80 kPa and 150 °C conditions. The PFTCS was then transferred onto PDMS or glass substrates by controlling temperature and time and 15 min at 150 °C provides the optimal PFTCS transfer for selective bonding. With these characterized parameters, we successfully demonstrated the fabrication of PMA to support long-term space missions. To estimate the stability of the stamped PFTCS, a PMA has been tested regularly for three years and no stiction or performance alteration was observed. A flight test has been done with a Cessaroni L1395 rocket for high g-force and vibration test and there is no difference on PMA performance after exposure of launch and landing conditions. This work shows promise as a simple and robust technique that will expand the stability and capability of PMA for space exploration.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献