Author:
Gheitarani Behnam,Golshan Marzieh,Hosseini Mahdi Salami,Salami-Kalajahi Mehdi
Abstract
AbstractRhodamine 6G (Rh6G) is modified by ethylenediamine to obtain rhodamine with amine functional groups (Rh6G-NH2). Rh6G-NH2 as an initial core is used to bond coumarin derivatives. Synthesized fluorescent colorants are specified using Fourier transform infrared spectroscopy (FT-IR), proton and carbon nuclear magnetic resonance (1H NMR and 13C NMR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM) to analyze the structure of the fluorescent pigments. Fluorescence microscopy, fluorescence spectrophotometer, and UV–visible–NIR reflectance spectra are used to demonstrate the optical properties. UV–Vis–NIR reflectance spectra showed that synthesized colorants were transparent in NIR region. Also, photophysical properties of 2-(4-methyl-2-oxo-2H-chromen-7-yloxy) acetic acid (MOHCYAA), Rh6G-NH2, and hybrid 2-(4-methyl-2-oxo-2H-chromen-7-yloxy) acetic acid/rhodamine 6G (HMR) were investigated. Type of solvent had a strong effect on quantum yield. Rh6G-NH2 (ϕs = 0.66) and HMR (ϕs = 0.72) displayed the maximum quantum yield in ethanol due to good interaction with ethanol and the formation of ring-opened amide form of rhodamine group. Finally, Rh6G-NH2 and HMR displayed the maximum quantum yield in ethanol due to good interaction of structure with ethanol and the formation of ring-opened amide form of rhodamine group in compound.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献