Effect of oxidation at an elevated temperature on the evolution of phases, microstructure, and properties of the oxide films formed on the surface of TiZr

Author:

Chang Shih-Hang,Li Zong-Yu

Abstract

AbstractThis study examined the evolution of the microstructure, microhardness, corrosion resistance, and selective leaching properties of oxide films formed on the surface of a Ti–50Zr (%) alloy during heat treatment at 600 °C for various time intervals. According to our experimental results, the growth and evolution of oxide films can be divided into three stages. In stage I (heat treatment for less than 2 min), ZrO2 was first formed on the surface of the TiZr alloy, which slightly improved its corrosion resistance. In stage II (heat treatment for 2–10 min), the initially generated ZrO2 is gradually transformed into ZrTiO4 from the top to the bottom of the surface layer. The formation of ZrTiO4 significantly improves the microhardness and corrosion resistance of the alloy. In stage III (heat treatment for more than 10 min), microcracks appeared and propagated on the surface of the ZrTiO4 film, deteriorating the surface properties of the alloy. The ZrTiO4 began to peel off after heat treatment for more than 60 min. The untreated and heat-treated TiZr alloys exhibited excellent selective leaching properties in Ringer’s solution, whereas a trace amount of suspended ZrTiO4 oxide particles formed in the solution after soaking the 60 min heat-treated TiZr alloy for 120 days. Surface modification of the TiZr alloy by generating an intact ZrTiO4 oxide film effectively improved its microhardness and corrosion resistance; however, oxidation should be performed appropriately to obtain materials with optimal properties for biomedical applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3