Author:
Çavuşoğlu Kürşat,Çavuşoğlu Dilek
Abstract
AbstractFusicoccin is a diterpene glycoside that plays an important role in the regulation of plant growth and development. Fusicoccin produced by Fusicoccum amydali fungus is known to affect plant growth positively with external applications due to its potential to stimulate the tolerance system of plants under stress conditions. In this study, it was aimed to reduce the negative effects of salt (0.15 M NaCl) stress on the germination and growth of onion (Allium cepa L.) bulbs by external fusicoccin (3 µM) application. For this purpose, the germination percentage, root length, root number, fresh weight, mitotic activity, micronucleus frequency, chromosomal abnormality, antioxidant enzyme activity, osmolyte accumulation, cell membrane damage and root anatomical structure were investigated in the current study. Salt stress caused a statistically significant difference (p < 0.05) in all examined parameters. External application of fusicoccin to onion bulbs germinated under salt stress conditions was found to be promising as a plant growth promoter and mitosis stimulator. In addition, fusicoccin application alleviated the harmful effects of salt stress on the chromosome structure and root anatomical structure and protected the cells from the cytotoxic and genotoxic effects of salt. Moreover, this application contributed to the fight against reactive oxygen species of onion plant and increased salt tolerance by regulating the accumulation of osmolyte substances such as proline and antioxidant enzymes such as superoxide dismutase and catalase, and by minimizing cell membrane damage in root cells. In conclusion, this study showed that exogenous application of 3 µM fusicoccin reduced the damage caused by oxidative stress in onion bulbs and served for healthy germination and growth.
Publisher
Springer Science and Business Media LLC
Reference97 articles.
1. Ahanger, M. A. & Agarwal, R. M. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol. Biochem. 115, 449–460 (2017).
2. Lin, J., Wang, Y., Sun, S., Mu, C. & Yan, X. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci. Total Environ. 576, 234–241 (2017).
3. Jouyban, Z. The effects of salt stress on plant growth. Tech. J. Eng. App. Sci. 2, 7–10 (2012).
4. Gumi, A. M., Aliero, A. A., Shehu, K. & Danbaba, A. Salinity stress: Effects on growth, biochemical parameters and ion homeostasis in Solanum lycospersicum L. (cv. Dan eka). Central Eur. J. Exp. Biol. 2, 20–25 (2013).
5. Cavusoglu, K. & Bilir, G. Effects of ascorbic acid on the seed germination, seedling growth and leaf anatomy of barley under salt stress. ARPN J. Agric. Biol. Sci. 10, 124–129 (2015).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献