Application of Piszkiewicz model on the electron transfer reaction of dithionite ion and bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex

Author:

Nkole I. U.,Idris S. O.,Abdulkadir I.,Onu A. D.

Abstract

AbstractThe need to better understand the binding mode of antioxidants (sulfur oxyanions) kinetically is a concern in medicine. Hence, a spectrophotometric method was used to study the application of the Piszkiewicz model on the electron transfer reaction of dithionite ion (S2O42−) and bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex at 303 K and an absorption maxima of 560 nm. It follows an acid dependent reductive pathway that is medium sensitive. Charge distribution from the reaction species contributes to the redox efficiency of the system, resulting in a primary salt effect (NaCl) with an enhanced reaction rate. Alteration of the reaction medium with ethanol led to an elevation of reduction time as the charge catalysis was distorted by a drop in the system permittivity. Likewise, sodium dodecyl sulfate in the system decreased the reduction rate of the complex due to the low impact of hydrophobic and ion interaction between the micelle and substrates. First order reaction kinetics was observed in the concentration of the redox partners and a 2:1 (complex: S2O42−) stoichiometry was obtained with the involvement of hydrogenated sulfite radical which resulted in the formation of sulfur dioxide and a Mo2+ deactivated complex. The occurrence of counterion catalysis is pronounced in the reaction system owing to the participation of like-charged substrates in the rate-controlling phase. The standard enthalpy (69.12 $$\pm$$ ± 0.05 kJ mol−1) and Gibbs energy (80.10 $$\pm$$ ± 0.07) kJ mol−1 suggest that the process is endothermic dependent. The investigation of the anionic surfactant effect on the reaction medium was quantitatively ascertained from the Piszkiewicz model of the complex interaction sequence.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3