Author:
Zou Yongjie,Esmaielpour Hamidreza,Suchet Daniel,Guillemoles Jean-François,Goodnick Stephen M.
Abstract
AbstractUnder continuous-wave laser excitation in a lattice-matched In0.53Ga0.47As/In0.8Ga0.2As0.44P0.56 multi-quantum-well (MQW) structure, the carrier temperature extracted from photoluminescence rises faster for 405 nm compared with 980 nm excitation, as the injected carrier density increases. Ensemble Monte Carlo simulation of the carrier dynamics in the MQW system shows that this carrier temperature rise is dominated by nonequilibrium LO phonon effects, with the Pauli exclusion having a significant effect at high carrier densities. Further, we find a significant fraction of carriers reside in the satellite L-valleys for 405 nm excitation due to strong intervalley transfer, leading to a cooler steady-state electron temperature in the central valley compared with the case when intervalley transfer is excluded from the model. Good agreement between experiment and simulation has been shown, and detailed analysis has been presented. This study expands our knowledge of the dynamics of the hot carrier population in semiconductors, which can be applied to further limit energy loss in solar cells.
Funder
The National Science Foundation and the Department of Energy
French ANR project: ICEMAN
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献