Sustainable multifunctional phenolic lipids as potential therapeutics in Dentistry

Author:

Dame-Teixeira Naile,El-Gendy Reem,Monici Silva Isabela,Holanda Cleonice Andrade,de Oliveira Andressa Souza,Romeiro Luiz Antonio Soares,Do Thuy

Abstract

AbstractPhenolic lipids components of the cashew nutshell liquid (CNSL) have molecular structures capable of chemical signalling that regulate gene expression, metabolism and inflammation. This study sets out to assess how CNSL derivatives impact oral bacteria, from an antibacterial and anti-collagenolytic perspective, as well as its biocompatibility with dental pulp stem cells. Two hemi-synthetic saturated CNSL derivative compounds were selected (LDT11-Anacardic Acids-derivative and LDT409-cardanol-derivative). Bacteriostatic activity was tested against Streptococcus mutans and Veillonella parvula. Antimicrobial capacity against preformed S. mutans biofilms was investigated using a collagen-coated Calgary Biofilm Device and confocal microscopy. Clostridium histolyticum, P. gingivalis and S. mutans biofilms were used to assess anti-collagenolytic activity. Biocompatibility with human dental pulp stromal cells (HDPSCs) was investigated (MTT for viability proportion, LDH assays for cell death rate). LDTs inhibited the bacterial growth, as well as partially inhibited bacterial collagenases in concentrations higher than 5 μg/mL. Dose–response rates of biofilm cell death was observed (LDT11 at 20, 50, 100 μg/mL = 1.0 ± 0.4, 0.7 ± 0.3, 0.6 ± 0.03, respectively). Maximum cytotoxicity was 30%. After 1 week, LDT409 had no HDPSCs death. HDPSCs viability was decreased after 24 h of treatment with LDT11 and LDT409, but recovered at 72 h and showed a massive increase in viability and proliferation after 1 week. LDTs treatment was associated with odontoblast-like morphology. In conclusion, LDT11 multifunctionality and biocompatibility, stimulating dental pulp stem cells proliferation and differentiation, indicates a potential as a bio-based dental material for regenerative Dentistry. Its potential as a bacterial collagenases inhibitor to reduce collagen degradation in root/dentinal caries can be further explored.

Funder

Academy of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3