Electrically tuning soft membranes to both a higher and a lower transparency

Author:

Chen Leihao,Ghilardi Michele,Busfield James J. C.ORCID,Carpi FedericoORCID

Abstract

AbstractThe possibility to electrically tune the optical transparency of thin membranes is of significant interest for a number of possible applications, such as controllable light diffusers and smart windows, both for residential and mobile use. As a difference from state-of-the-art approaches, where with an applied voltage the transparency can only increase or decrease, this paper presents the first concept to make it electrically tuneable to both higher and lower values, within the same device. The concept is applicable to any soft insulating membrane, by coating both of its surfaces with a circular transparent stretchable conductor, surrounded by a stretchable annular conductor. The two conductors are used as independently addressable electrodes to generate a dielectric elastomer-based actuation of the membrane, so as to electrically control its surface topography. We show that the optical transmittance can electrically be modulated within a broad range, between 25% and 83%. This approach could be especially advantageous for systems that require such a broad tuning range within structures that have to be thin, lightweight and acoustically silent in operation.

Funder

China Scholarship Council

European MSCA-ITN-2014-Iarie Sklodowska-Curie Innovative Training Network Programm

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3