Deep learning for the ovarian lesion localization and discrimination between borderline and malignant ovarian tumors based on routine MR imaging

Author:

Wang Yida,Zhang He,Wang Tianping,Yao Liangqing,Zhang Guofu,Liu Xuefen,Yang Guang,Yuan Lei

Abstract

AbstractTo establish a deep learning (DL) model in differentiating borderline ovarian tumor (BOT) from epithelial ovarian cancer (EOC) on conventional MR imaging. We retrospectively enrolled 201 patients of 102 pathologically proven BOTs and 99 EOCs at OB/GYN hospital Fudan University, between January 2015 and December 2017. All imaging data were reviewed on picture archiving and communication systems (PACS) server. Both T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) MR images were used for lesion area determination. We trained a U-net++ model with deep supervision to segment the lesion area on MR images. Then, the segmented regions were fed into a classification model based on DL network to categorize ovarian masses automatically. For ovarian lesion segmentation, the mean dice similarity coefficient (DSC) of the trained U-net++ model in the testing dataset achieved 0.73 $$\pm$$ ± 0.25, 0.76 $$\pm$$ ± 0.18, and 0.60 $$\pm$$ ± 0.24 in the sagittal T2WI, coronal T2WI, and axial T1WI images, respectively. The DL model by combined T2WI computerized network could differentiate BOT from EOC with a significantly higher AUC of 0.87, an accuracy of 83.7%, a sensitivity of 75.0% and a specificity of 87.5%. In comparison, the AUC yielded by radiologist was only 0.75, with an accuracy of 75.5%, a sensitivity of 96.0% and specificity of 54.2% (P < 0.001).The trained DL network model derived from routine MR imaging could help to distinguish BOT from EOC with a high accuracy, which was superior to radiologists’ assessment.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CT-Based Radiomics and Machine Learning for Differentiating Benign, Borderline, and Early-Stage Malignant Ovarian Tumors;Journal of Imaging Informatics in Medicine;2024-01-11

2. OCCNET: Improving Imbalanced Multi-Centred Ovarian Cancer Subtype Classification in Whole Slide Images;2023 20th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3