Loss of Rsph9 causes neonatal hydrocephalus with abnormal development of motile cilia in mice

Author:

Zou WenzhengORCID,Lv Yuqing,Liu Zux iang,Xia Pengyan,Li Hong,Jiao JianweiORCID

Abstract

AbstractHydrocephalus is a brain disorder triggered by cerebrospinal fluid accumulation in brain cavities. Even though cerebrospinal fluid flow is known to be driven by the orchestrated beating of the bundled motile cilia of ependymal cells, little is known about the mechanism of ciliary motility. RSPH9 is increasingly becoming recognized as a vital component of radial spokes in ciliary “9 + 2” ultrastructure organization. Here, we show that deletion of the Rsph9 gene leads to the development of hydrocephalus in the early postnatal period. However, the neurodevelopment and astrocyte development are normal in embryonic Rsph9−/− mice. The tubular structure of the central aqueduct was comparable in Rsph9−/− mice. Using high-speed video microscopy, we visualized lower beating amplitude and irregular rotation beating pattern of cilia bundles in Rsph9−/− mice compared with that of wild-type mice. And the centriolar patch size was significantly increased in Rsph9−/− cells. TEM results showed that deletion of Rsph9 causes little impact in ciliary axonemal organization but the Rsph9−/− cilia frequently had abnormal ectopic ciliary membrane inclusions. In addition, hydrocephalus in Rsph9−/− mice results in the development of astrogliosis, microgliosis and cerebrovascular abnormalities. Eventually, the ependymal cells sloughed off of the lateral wall. Our results collectively suggested that RSPH9 is essential for ciliary structure and motility of mouse ependymal cilia, and its deletion causes the pathogenesis of hydrocephalus.

Funder

CAS Strategic Priority Research Program

National Key R&D Program of China

K.C.Wong Education Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3