Author:
Qiao Sen,Luo Xiaofang,Wang Hui,Fang Yue,Zhang Lili
Abstract
AbstractValproic acid (VPA) is widely used as a eutherapeutic and safe anticonvulsant drug, but the mechanism is not well elucidated. Histone deacetylases (HDACs) were first identified as direct targets of VPA. Many loss-of function mutants in S. pombe have been shown to be VPA sensitive but not sensitive to other HDAC inhibitors, such as sodium butyrate or trichostatin A (TSA). This difference suggests that there are multiple VPA target genes. In the current study, we isolated a VPA-sensitive (vas) mutant, vas4-1, and cloned the VPA target gene vas4+/vrg4+ by performing complementation experiments. The vas4+/vrg4+ gene encodes a putative Golgi GDP-mannose transporter, Vrg4, which is highly homologous with ScVrg4p. Physiological experiments indicated that SpVrg4p is involved in maintaining cell wall integrity (CWI) under high- or low-temperature stress. The results of a coimmunoprecipitation assay suggested that SpVrg4p may be transferred from the ER to the Golgi through SpGot1p loaded COPII vesicles, and both single and double mutations (S263C and A271V) in SpVrg4p compromised this transfer. Our results suggested that CWI in S. pombe is compromised under temperature stress by the VPA-sensitive vas4 mutant.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献