Ganoderic acid C2 exerts the pharmacological effects against cyclophosphamide-induced immunosuppression: a study involving molecular docking and experimental validation

Author:

Liu Yuchen,Tan Dongsheng,Cui Hong,Wang Jihua

Abstract

AbstractTriterpenoids, as the main active ingredient of Ganoderma lucidum fermented extract, exert multiple pharmacological activities, including immunomodulatory properties. Our study aimed to reveal the pharmacological effects and potential mechanisms of Ganoderic acid C2 (GAC) against cyclophosphamide (CY)-associated immunosuppression. Target genes were collected from several public databases, including the DisGeNET, Comparative Toxicogenomics Database, GeneCards, and PharmMapper. STRING database was used to construct the protein–protein interaction of network. Subsequently, molecular docking was carried out to visualize the protein-GAC interactions. Experimental validations, including ELISA and qRT-PCR were performed to confirm the pharmacological activities of GAC on CY-induced immunosuppression model. A total of 56 GAC-related targets were identified to be closely associated with CY-induced immunosuppression. Enrichment analyses results revealed that these targets were mainly involved in immune and inflammatory response-related pathways. STAT3 and TNF were identified as the core targets of GAC. Molecular docking indicated that GAC combined well with STAT3 and TNF protein. In addition, animal experiments indicated that GAC improved immunity as well as STAT3 and TNF genes expression in CY-induced immunosuppression, which further verified the prediction through bioinformatics analysis and molecular docking. We successfully revealed the potential therapeutics mechanisms underlying the effect of GAC against CY-induced immunosuppression based on the combination of bioinformatics analysis, molecular docking, and animal experiments. Our findings lay a theoretical foundation for the in-depth development and utilization of Ganoderma lucidum fermentation product in the future, and also provide theoretical guidance for the development of innovative drugs that assist in improving immunity.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3