In Silico drug repurposing pipeline using deep learning and structure based approaches in epilepsy

Author:

Lv Xiaoying,Wang Jia,Yuan Ying,Pan Lurong,Liu Qi,Guo Jinjiang

Abstract

AbstractDue to considerable global prevalence and high recurrence rate, the pursuit of effective new medication for epilepsy treatment remains an urgent and significant challenge. Drug repurposing emerges as a cost-effective and efficient strategy to combat this disorder. This study leverages the transformer-based deep learning methods coupled with molecular binding affinity calculation to develop a novel in-silico drug repurposing pipeline for epilepsy. The number of candidate inhibitors against 24 target proteins encoded by gain-of-function genes implicated in epileptogenesis ranged from zero to several hundreds. Our pipeline has repurposed the medications with most anti-epileptic drugs and nearly half psychiatric medications, highlighting the effectiveness of our pipeline. Furthermore, Lomitapide, a cholesterol-lowering drug, first emerged as particularly noteworthy, exhibiting high binding affinity for 10 targets and verified by molecular dynamics simulation and mechanism analysis. These findings provided a novel perspective on therapeutic strategies for other central nervous system disease.

Publisher

Springer Science and Business Media LLC

Reference54 articles.

1. Beghi, E. The epidemiology of epilepsy. Neuroepidemiology 54, 185–191 (2020).

2. Fiest, K. M. et al. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 88, 296–303 (2017).

3. Goldenberg, M. M. Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. P T Peer-Rev. J. Formul. Manag. 35, 392–415 (2010).

4. Dyńka, D., Kowalcze, K. & Paziewska, A. The role of ketogenic diet in the treatment of neurological diseases. Nutrients 14, 5003 (2022).

5. Rugg-Gunn, F., Miserocchi, A. & McEvoy, A. Epilepsy surgery. Pract. Neurol. 20, 4–14 (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3