Author:
Krueger Stephanie,Martins de S. e Silva Juliana,Santos de Oliveira Cristine,Moritz Gerald
Abstract
AbstractIn insects, females can keep sperm capable of fertilisation over a long period with the help of the spermatheca. The effectiveness of storing fertile sperm is expected to reflect in the reproductive strategy and, thus, the morphology of the involved organs. In this work, we focused on the relationship between reproduction and morphology in the haplodiploid Thysanoptera, especially if a loss of these traits occurs under thelytoky. The spermathecal morphology and the fate of stored spermatozoa were studied by microscopic techniques (high-resolution x-ray computed tomography and transmission electron microscopy) in three species with different reproductive modes and lifestyles (Suocerathrips linguis, Echinothrips americanus, Hercinothrips femoralis). Mating experiments were conducted to analyse the use of the transferred sperm in the thelytokous H. femoralis. Results show that the spermathecae are relatively simple, which can be explained by the availability of sperm and the short lifespan of the females. However, the spermatheca in H. femoralis seems to be vestigial compared to the arrhenotokous species and females do not use sperm for fertilisation. No substantial change was observed in the structure of spermatozoa, despite an enlargement of the sperm organelles being measured during storage in all three species. The results of this work demonstrate differences in the morphology of the spermatheca, especially concerning the reproduction mode, promoting the understanding of the complex interaction between morphology and behaviour.
Funder
Martin-Luther-Universität Halle-Wittenberg
Publisher
Springer Science and Business Media LLC
Reference76 articles.
1. Cavalleri, A., Masumoto, M., Minaei, K., Mound, L. & Ulitzka, M. R. ThripsWiki - providing information on the World's thrips. https://thrips.info/wiki/Main_Page (2022).
2. Kirk, W. D. J., de Kogel, W. J., Koschier, E. H. & Teulon, D. A. J. Semiochemicals for thrips and their use in pest management. Annu. Rev. Entomol. 66, 101–119. https://doi.org/10.1146/annurev-ento-022020-081531 (2021).
3. Mota-Sanchez, D. & Wise, C. J. The Arthropod Pesticide Resistance Database. Available at http://www.pesticideresistance.org (2022).
4. von Kèler, S. Entomologisches Wörterbuch. mit besonderer Berücksichtigung der morphologischen Terminologie. 3rd edn. (Akademie, Berlin, 1963).
5. Pascini, T. V. & Martins, G. F. The insect spermatheca: an overview. Zoology Jena (Germany) 121, 56–71. https://doi.org/10.1016/j.zool.2016.12.001 (2017).